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Structure-Preserving Graph Kernel for

Brain Network Classiﬁcation[l]

Brain network analysis 1s of great importance in
clinical diagnosis and treatments. we present a
novel graph-based kernel learning approach for
brain network classification. Specifically, we
demonstrate how to exploit the natural graph
structure of brain networks to encode prior know-
ledge 1n the kernel using the tensor product
operator. For each brain network, we first propose
to apply sparse matrix factorization with a sym-
metric constraint to extract tensor product based
approximation. We then use them to derive a
structure-persevering symmetric graph kernel to be
fed into the support vector machine (SVM). The
framework 1s shown as follows:

Brain network Graph modeling Graph-based kernel learning

As mentioned above, the brain network 1s
encoded as a symmetric matrix. We firstly try to
learn a sparse structure X, as is to be expected, by
tensor product:
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where R is the predefined rank of matrix X. Then,
we use a graph-based feature mapping function
¢(-) to transform the graph data into a higher
dimensional feature space (Hilbert space). Further-
more, we prove that the matrix factorization can be
mapped 1nto the outer product feature space:
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As usual, the kernel function can be used to
simplify this mapping:
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The average EEG-connectome during neutral,
maintain, and reappraise and the classification
accuracy by competing methods in five different
frequency bands are shown as follows:
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Category Method Delta Theta Alpha Beta All
Edge 42.42 54.55 51.52 3152 45.45
CC 54.55 54.55 42.42 5152 4242
CPL 48.48 42.42 45.45 48.48 39.39
Traditional gSpan 3939 5152 3939 5455 4848
DuSK-2D 31:52 63.64 5151 3152 54.55
DuSK-3D 57.58 57.58 57.58 54.55 48.48
DuSK-4D 54.55 54.55 202 54.55 57.58
CNN-2D 51.11 43.71 43.07 42.54 41.48
Deep Learning CNN-3D 46.67 45.93 41.48 57.04 44.44
GCN 41.31 48.08 41.01 40.61 37.37
SSGKy/o sparse 57.58 66.67 63.64 54.55 57.58

Ours P

SSGK 63.64 69.70 72.73 60.61 57.58

Tensor-based Multi-Modality Feature

Selection for Alzheimer’s Diagnosis

[2]

The assessment of Alzheimer’s Disease (AD) and
Mild Cognitive Impairment (MCI) associated with

brain changes remains a challenging task. We
propose a novel tensor-based multi-modality
feature selection and regression model for the
diagnosis and biomarker i1dentification of AD and

MCI from normal controls.

We present the

practical advantages of our method for the analysis
of ADNI data using three 1maging modalities
(VBM-MRI, FDG-PET and AV45-PET) with
clinical parameters of disease severity and cog-
nitive scores. The framework of our method 1s

shown as follows:
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To exploit the high-dimensional structure and
correlation 1n the tensor representation, we employ
the following sparse and low-rank tensor regre-

ssion model:
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1S a unit-rank tensor
defined upon the CP rank. Here we adopt the fast
Stagewise Unit-Rank tensor Factorization (SURF)
algorithm to solve the optimization problem above.

Performance comparison over different feature
sizes on ADNI dataset 1s shown below:

Features Scores Metrics PCA+LR

Lasso

ENet

gLasso
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To verify that our proposed method can learn a
better sparse structure, we visualize the coefficient
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116 ROIs defined by AAL

welghts 1n terms of each i1maging modality:

We also use BrainNet Viewer to visualize the brain
structure and highlight the regions that the pro-
posed method used to make the predictions against

other compared methods:

(d) Proposed

Tensor-based Multivariate Regression

. . . 3
for Alzheimer’s Dlagnosm[ ]

Based on previous study, we are further proposing
multivariate tensor regression. Specifically, we
introduce K related losses to regress jointly as
follows:

min Y ~ Ly, (W, X),y) + AQW),
k=1

where L, indicates specific loss function for

respective response variate, and W = (W, ... \WX|€E

rD1x-xDuxK denotes the final coefficients tensor.
If we introduce e, = [0,---,0,1,0,---,0]T € RX as

TR

the response indicator vector and the Mean Square

Error (MSE) as the loss function, the final optimiz-

ation problem of sparse multivariate tensor

regression 1s as follows:
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s.t. CP-rank(W,) < 1.

The preliminary results compared with single
variate regression are shown as follows:

Features Scores Metrics Single Variate Multi-Variate

DSS RMSE| 0.336 £ 0.016 0.327 4+ 0.009
ADAS-13 RMSE| 0.141 £ 0.032 0.145 £+ 0.019

RO S MMSE  RMSE| 0.156 +0.019  0.142 + 0.011
Total ~ RMSE|  0.397 +.0251  0.385 + 0.010

DSS  RMSE| 0.328+0.010 0.328 + .010

16« 11 ADAS-13  RMSE|  0.150+0.021  0.148 + 0.031
MMSE RMSE| 0.154 +0.021 0.153 + 0.016

Total ~ RMSE|  0.392+0.019 0.391 + 0.021

DSS  RMSE| 0.31840.021 0.317 + 0.010

116 x 116 « 3 ADAS-13  RMSE|  0.149+£0.081  0.151+0.013

MMSE RMSE] 0.155 £+ 0.020 0.142 4+ 0.011
Total RMSE] 0.384 + 0.029 0.379 £ 0.010
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